
Volume Three—Modules 31 August 2004 i

Chapter Four: Contents

 (Route Planner – 31 August 2004 – LA-UR-00-1767 – TRANSIMS 3.1)

1. INTRODUCTION..1
1.1 OVERVIEW ... 1
1.2 TRANSIMS NETWORK ... 2

2. ROUTE PLANNER DESCRIPTION..5
2.1 OVERVIEW ... 5
2.2 DISTINGUISHING FEATURES... 5
2.3 TERMINOLOGY ... 6
2.4 TRAVEL MODES ... 7
2.5 TRIP REQUESTS .. 8
2.6 PARKING... 10
2.7 SHARED RIDES ... 10
2.8 ANOMALOUS ACTIVITY FILE ... 11
2.9 NETWORK LAYERS... 15

3. ALGORITHM...18
3.1 HIGH-LEVEL DESCRIPTION .. 18
3.2 ROUTE PLANNER INTERNAL NETWORK... 18
3.3 TERMINOLOGY ... 18
3.4 EXAMPLE TRANSFORMATION .. 18
3.5 NETWORK ASSUMPTIONS MADE BY THE ROUTE PLANNER ... 22
3.6 TRANSIT ... 22
3.7 COST... 26

4. ROUTE PLANNER RUNTIME CONFIGURATION ...31
4.1 LOGGING CONFIGURATION FILE KEYS .. 31
4.2 OTHER CONFIGURATION FILE KEYS.. 31

5. PLAN RETIME ..33

6. ROUTE PLANNER UTILITY PROGRAMS...34
6.1 MAKEHOUSEHOLDFILE UTILITY .. 34
6.2 10TO26 AND 26TO10 UTILITIES.. 34
6.3 CATINDICES UTILITY .. 34
6.4 PLANFILTER UTILITY.. 35
6.5 DISTRIBUTEPLAN UTILITY .. 37
6.6 CONGESTEDLINKS UTILITY... 39
6.7 REARRANGEPLANS UTILITY .. 40

7. PLAN FILES ..43
7.1 OVERVIEW ... 43
7.2 FILE FORMAT ... 43
7.3 PLAN LIBRARY FILES ... 44
7.4 PLAN FILE CONFIGURATION FILE KEYS .. 44
7.5 EXAMPLE.. 44

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 ii

APPENDIX A: PLAN DATA DEFINITIONS AND DATA...45

APPENDIX B: MODE-DEPENDENT DATA...47

APPENDIX C: ROUTE PLANNER CONFIGURATION FILE KEYS ..49

APPENDIX D: PLAN FILE CONFIGURATION FILE KEYS ...52

APPENDIX E: ANNOTATED EXAMPLE OF A PLAN...53

APPENDIX F: ERROR CODES...54

CHAPTER FOUR: INDEX ..55

Chapter Four: Figures

Fig. 1. Data flow diagram that shows how the TRANSIMS Route Planner generates

travel plans for travelers. ... 2
Fig. 2. The major input to the Route Planner includes the following data: (1) TRANSIMS

Network, (2) activities, (3) transit, and (4) vehicle information from the synthetic
population data. ... 3

Fig. 3. A high-level depiction of the various layers used by the Route Planner. From
individual traveler preferences and constraints contained in the synthetic population
and activities data blocks, the Route Planner plans for trips that consist of multiple
modal legs (e.g., walk-car-walk). Constructing multiple layers in which each layer
can be encoded as a different unimodal network allows for the efficient calculation of
trips constrained by modal sequences. Also shown are the process links connecting
the unimodal networks. .. 15

Fig. 4. Conceptual diagram of the Route Planner network, in which parking accessories
(P,Q) are in the street layer, activity locations (R,S) in the walk layer, and transit
stops (C,D) in the transit layers. .. 16

Fig. 5. The TRANSIMS Network representation of two intersection nodes with a
connecting bidirectional link.. 19

Fig. 6. The corresponding nodes and edges of the Route Planner Internal Network
representation... 20

Fig. 7. This TRANSIMS Network is similar to the one shown in Fig. 5, with the exception
that this one has a unidirectional link in place of the bidirectional link. 21

Fig. 8. This figure shows that there are edges in one direction only on the street layer.. 21
Fig. 9. TRANSIMS Network representation of two bus routes. .. 23
Fig. 10. Route Planner Internal Network representation corresponding to Fig. 9. 24
Fig. 11. TRANSIMS Network representation of a complex transit network with two bus

routes and a light rail line.. 25
Fig. 12. Route Planner Internal Network representation corresponding to Fig. 11. 26

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 iii

Chapter Four: Tables

Table 1. Currently recognized travel mode letters. ... 7
Table 2. Description of time priorities. ... 9
Table 3. Types of anomalies. .. 11
Table 4. Anomalous activity file common fields... 11
Table 5. No Path Subtypes.. 12
Table 6. No Path fields. ... 12
Table 7. Invalid Time fields. ... 13
Table 8. Invalid Shared Ride Time subtypes. .. 13
Table 9. Invalid Shared Ride Time fields. .. 14
Table 10. Connectivity fields. .. 14
Table 11. Location fields. .. 14
Table 12. Parking fields. ... 14
Table 13. Actual trip. .. 29
Table 14. Reported trip. ... 30
Table 15. Configuration file keys if a partition exists.. 38
Table 16. Configuration file keys to generate a partition.. 38
Table 17. Plan library files. .. 44
Table 18. Mode-dependent data for a car driver. .. 47
Table 19. Mode-dependent data for a car passenger... 47
Table 20. Mode-dependent data for a transit driver. .. 47
Table 21. Mode-dependent data for a transit passenger. .. 47
Table 22. Mode-dependent data for a pedestrian. ... 48
Table 23. Mode-dependent data for a magic move... 48
Table 24. Route Planner error codes... 54

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 1

Chapter Four—Route Planner

1. INTRODUCTION

1.1 Overview

As its name implies, the Route Planner module generates routes for travelers. Each
traveler, including transit drivers, itinerant travelers, and truck drivers, receives an
individual travel plan. Once the plans are generated for all travelers, they are
simultaneously executed in the Traffic Microsimulator.

Constraining the routes between different locations are

1) the transportation network, which represents the metropolitan region being studied,
and

2) the preferences of individual travelers.

Information about each traveler’s activities (contained in Chapter Three: (Activity
Generator)) is used to create trip requests. A trip request consists of three parts:

• the origin and destination of the trip,

• the ranges for the preferred starting and ending time and duration, and

• the travel mode choice.

Given in the form of a string of characters, the travel mode choice defines the allowed
modes of travel and their order. The Mode Preference File (configuration file key:
MODE_MAP_FILE) defines the mapping between mode choice numbers (as used in the
activity file) and mode choice strings (as used by the Route Planner). Additional
information about the vehicles that a particular traveler may use is contained in the
Vehicle File (configuration file key: VEHICLE_FILE). Fig. 1 shows the data flow the
Route Planner uses to generate plans for individual travelers.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 2

Fig. 1. Data flow diagram that shows how the TRANSIMS Route Planner generates
travel plans for travelers.

1.2 TRANSIMS Network

The TRANSIMS Network provides information about the streets, intersections, signals,
parking lots, activity locations, and transit stops in a road transportation network. This
information is used to construct the Route Planner Internal Network. The internal
network is time dependent—that is, travel on a link may incur different delays at different
times of the day. The information about delays on links is derived from the Traffic
Microsimulator output and provided in the Feedback File (configuration file key:
ROUTER_LINK_DELAY_FILE), which specifies the mean delays on each link over 15-
minute intervals. If the delay for a particular interval is not given, the free speed delay is
used. More information about link delays may be found in Section 3.7.1.

The Route Planner’s core is Dijkstra’s shortest-path-finding algorithm, with extensions
for time-dependent delays and paths constrained by travel mode. The internal network
and trip requests are given to the path-finding algorithm, which creates routes and outputs
them in the form of plans.

1.2.1 Route Planner Major Input/Output

Fig. 2 shows the Route Planner’s major inputs and outputs. The major inputs to the Route
Planner are

• transit routes and schedules,

• the activities list,

• the TRANSIMS multimodal network,

• the vehicle file, and

• link travel times.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 3

The major outputs of the Route Planner are

• the plan list, and

• the anomalous activity list.

Route
Planner

Transit Data
route paths in network
schedule of stops
driver plans
vehicle properties (e.g. bus
capacity)

Network Data
nodes
links
lane connectivity
activity locations
parking places & transit stops
"process" links

Vehicles Traveler Plans
vehicle start and finish
parking locations
vehicle path through network
expected arrival times along
path
travelers (driver and
passengers) present in
vehicle
traveler mode changes

Activities

Link Travel Times

Fig. 2. The major input to the Route Planner includes the following data: (1) TRANSIMS
Network, (2) activities, (3) transit, and (4) vehicle information from the synthetic
population data.

1.2.2 Household File

To plan just a portion of an activity set, a household file (configuration file key
ROUTER_HOUSEHOLD_FILE) may be specified. This file contains a list of household IDs
to be planned. In order to support interhousehold shared rides (shared rides where the
driver and passengers come from more than one household), dependant households can
be specified. If more than one household ID is listed on a single line of the household
file, the households are considered to be dependant and will be routed at the same time.
See Section 6.1 for information about creating a household file with dependant
households.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 4

1.2.3 Parallelization

To increase execution speed, the Route Planner may be parallelized (run on several
processes of the same machine) and distributed (run on several machines). These
techniques may be combined, allowing the Route Planner to take full advantage of a
cluster of multiprocessor machines.

Threads enable the parallel execution of several copies of the path-finding algorithm on a
shared memory machine. Each planning thread uses the same copy of the network to
create plans and trip requests for different households. The plans created by the different
threads are written to the plan file (configuration key PLAN_FILE). The number of
threads that is used is controlled by the configuration key ROUTER_NUMBER_THREADS. If
this key has a value of 0, threading is disabled completely. A positive value indicates the
number of route planning threads to use. In addition, one thread responsible for reading
households from the activity file and one thread responsible for writing plans to the plan
file are used. Therefore, if threading is enabled, there are a minimum of three threads
(one input thread, one output thread, and one planning thread). In general, the number of
planning threads should be equal to the number of available processors. This will
effectively overlap computation with I/O.

Households are assigned to threads using a round-robin approach; so, for the same
activity list, each thread is always given the same households to plan. This is important
for repeatability, so that the same random numbers are used in different runs of the Route
Planner.

When running on several computers, several instances of the Route Planner may run
concurrently. In this case, the Route Planner is started on each machine with the
command:

 Router <configuration file> <rank>

where rank is an integer starting at 0, identifying the processor on which this copy of the
Route Planner is executing.

The household file, completed household file, plan file, and anomalous activity file are
unique for each process and are formed by appending .txx to the appropriate filename,
where xx is the rank expressed as a two-digit base 26 number (i.e., the sequence is AA,
AB, …, AZ, BA, BB, …). Households are assigned to processes by creating the
appropriate household file. The utility MakeHouseholds can be used to create appropriate
household files. See Section 6.1 for more information.

If the configuration file key ROUTER_COMPLETED_HOUSEHOLD_FILE is set, household
IDs will be written to this file as they are completed. This allows restart capability, as any
households whose IDs are in this file need not be replanned. Because each process has its
own completed household file, individual processes may be restarted independently. Care
must be taken to avoid writing over the partial plan and problem files.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 5

2. ROUTE PLANNER DESCRIPTION

2.1 Overview

The Route Planner computes the “shortest” path, subject to mode constraints, for each
traveler in the system. Each link within the transportation network has a cost associated
with it. Accordingly, the shortest path can be interpreted as least cost, for some
generalized meaning of cost. Constraints are provided by criteria such as mode
preferences for different legs of the trip.

Costs for a link can be computed simply with input, such as an estimated time delay.

There are also more sophisticated ways to calculate costs. For example, they can be
calculated based on several variables, including time delays and the actual monetary costs
of a link. More abstract variables can be used, such as a penalty for traveling through
construction areas, and traveler demographics, such as household income level.

2.2 Distinguishing Features

The Route Planner has three distinguishing features.

2.2.1 Individual Plans

Plans are computed for each individual traveler in the population, based on that
individual’s activity demands and preferences. Such computations enable each traveler to
have an individualized view of the transportation system. Accordingly, costs associated
with links in the network are computed separately for each traveler.

2.2.2 Per Link Time-Dependant Delay

Link costs are computed in a time-dependent manner that can account for time delays
resulting from actual travel conditions, such as peak-hour congestion. These delays are
fed back from the Microsimulation into the Route Planner, enabling routes to be changed
for individual travelers. Different delays for links containing High Occupancy Vehicle
(HOV) only lanes are also accommodated.

2.2.3 Travel Mode Constraints

The Route Planner abides by any mode preferences contained in the activity files. Thus,
if the activity files specify that a traveler will walk, then take a car, and then walk again
between two desired activities, the Route Planner will produce a plan (if feasible) that
ensures these modes are used in this sequence.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 6

2.3 Terminology

2.3.1 Traveler Plan

A traveler plan consists of a set of trips that carries the traveler through his or her desired
activities. A trip consists of a set of contiguous legs. Activities of a given duration at a
specific location may be separate trips. A leg consists of contiguous nodes and links that
are traversed with a single travel mode. For example, a trip may consist of three legs:

• walking,

• transit, and

• walking.

A traveler plan could consist of:

• a home activity,

• a trip from home to work

• a work activity,

• a trip from work to shopping,

• a shopping activity,

• a trip from shopping to home, and

• a home activity.

2.3.2 Transit Vehicle

From the point of view of the Route Planner, a transit vehicle is considered to be any
vehicle that makes scheduled stops along a predetermined route. Buses, trains, and
streetcars are all considered transit vehicles, whereas a taxi would not be considered a
transit vehicle.

2.3.3 Trip Request

A request for travel to be planned by the Route Planner, a trip request consists of a
starting location, a destination location, a start time, end time, duration constraints, and a
mode string.

2.3.4 Mode String

A mode string contains a list of travel modes that must be used in the order given along
the path from source to destination.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 7

2.4 Travel Modes

There are twelve individual modes available within TRANSIMS. The modes and their
corresponding mode letter are show in Table 1. Bike mode is routed at a faster speed on
the walk network. Transit mode allows travel on any type of mass transit system (bus,
rail, streetcar, or trolley) and allows walking in between transit routes. This allows
transfers between different types of transit that may not use the same transit stop.

Magic mode is an unrouted mode. For magic moves, a walk plan is generated whose start
and stop times are taken from the times given in the activities. Its intended use is to
enable the use of travel modes that are not supported by the Route Planner and/or the
Traffic Microsimulator, such as school busses. The mode string wcwxw, where x is one
of b, l, g, p, y, s, or t, is used for park-and-ride. Park-and-ride is not currently supported.

Any mode string consisting of the mode letters in Table 1 can be planned. Some are
meaningless because they will never produce paths (e.g., cb—because a traveler must
walk from a parking location to a bus stop).

Table 1. Currently recognized travel mode letters.

Mode Mode Letter
Walk w
Bike i
Car c
Bus b
Light Rail l
Regional Rail g
Rapid Rail p
Trolley y
Street Car s
Transit t
Magic Move – School Bus K
Magic Move -- Other k

The mapping between the mode strings used by the Route Planner and the mode numbers
used in the activity file is given by the mode map file (configuration file key
MODE_MAP_FILE). Each line in this file contains a mode number and a corresponding
mode string.

An example mode file containing three mappings is shown below.

 1 w
 2 wcw
 3 wtw

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 8

2.5 Trip Requests

2.5.1 Generating Trip Requests from Activities

The activity, vehicle, and mode files are used to generate trip requests, which are then
planned. In the activity file (configuration file key: ACTIVITY_FILE), travelers’ mode
preferences are given by integers. Their meaning is defined by the mode file
(configuration file key: MODE_MAP_FILE), which gives the correspondence between
these integers and mode strings used by the Route Planner.

The Route Planner uses the household file (configuration file key:
ROUTER_HOUSEHOLD_FILE) to determine the travelers for which plans should be
generated. If this value defines a file that can be opened, then only the travelers belonging
to households whose IDs are listed in this file will be planned. Otherwise, the Route
Planner plans all of the travelers in the activity file. All travelers in a single household are
planned together because they may share transportation or activities. The
Selector/Iteration Database uses the household file as part of the feedback mechanism
that enables a portion of the population to be re-planned.

Plans are generated in response to trip requests for a traveler. Trip requests come from the
activity file. For every traveler, each pair of consecutive activities at different locations
generates a trip request. A trip request consists of a source activity location; a destination
activity location; constraints on the start time, end time, and duration; and the travel
modes that are allowed. A trip request is satisfied by a plan, in the form of a trip made up
of unimodal legs. Travel plans are separated by activity plans.

The activities of each traveler are split into legs that define either activities (activity legs),
or travel (transportation legs). Activity legs begin and end at the same activity location.
Transportation legs begin and end at different activity locations. The activity legs are not
planned, and are written into the plan file using the times from the activity file. Travel
plans are created for the transportation legs. If a transportation leg is multimodal, it is
further split up into unimodal sections, which are planned as separate legs of a trip.

If a planned trip uses a car, the vehicle file (1) is examined to find the location of the car,
and (2) the trip is split. The first mode string ends with the last symbol before c, and the
destination of the first part of the trip is the parking location where the car is located.

The second part of the trip starts there (with mode c) and ends at the original trip’s
destination. The two parts are planned separately then written out consecutively in the
plan file.

2.5.2 Time Priority

Each activity has a time priority field that describes which of start time, end time, and
duration is important for that activity. The Route Planner uses this information to fit
transportation legs in between activity legs. Table 2 describes the various values of the
time priority field.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 9

Table 2. Description of time priorities.

Time Priority

Important Time
Start Stop

Duration

0
1 X
2 X
3 X X
4 X
5 X X
6 X X
7 X X X

The following describes how the Route Planner uses the time priority field to determine
the start time, stop time, and duration of activity legs.

The start time of an activity is mainly determined by the end time of the preceding
transportation leg (PTL). If there is no PTL (because this is the first activity for the
traveler) or the PTL ends prior to the lower bound of the start time specified for this
activity, the start time is taken from the distribution given in the activity file. If the
activity time priority doesn’t specify start time (priorities 0,2,4,6), the start time of the
activity is the maximum of the end time of the PTL and the lower bound of the start time
of this activity.

If the activity time priority does not include start time (priorities 1,3,5,7) and the PTL end
time is prior to the lower bound of the activity start time, then pick a start time from the
distribution. If the PTL end time is greater than the activity start time upper bound, then
the PTL start time is decreased, if possible, so that the PTL end time is equal to the
activity start time upper bound. This is only done if the constraints on the previous
activity are not violated. Otherwise, the start time is the arrival time of the PTL.

Next, the duration and stop time of the activity must be determined. Of these two, if only
duration is specified by the time priority (priorities 4,5), a duration is picked from the
distribution given in the activity file. The stop time is then the start time plus duration.
For all other priorities, a stop time is picked from the distribution given in the activity
file. The duration is the difference between the stop time and start time. If the resulting
duration is 0 or less, then the duration is changed to 1, and the stop time is changed to
start time+1.

Finally, the times listed as important by the time priority are checked against the ranges
specified by the activity file. An entry in the anomalous activity file is created for any
time indicated by the time priority that does not fall in the proper range; however, the
traveler is still planned.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 10

2.6 Parking

Because TRANSIMS tracks the movements of each individual throughout the simulation,
the Route Planner retains the location of each household’s vehicles. This enables an
individual from a household to drive to a parking location, walk from the parking lot to
work, then return to the same parking location to retrieve the vehicle for the trip home.

Currently the Route Planner will pick a parking location adjacent to the destination
activity location for the trip as the destination parking location. If there is no adjacent
parking location, the Route Planner will display a warning and skip the remainder of the
traveler’s activities. In this case, adjacent means that there is a process link from the
ending parking location to the ending activity location. This restriction will be removed
in a future version of the Route Planner. If the ending activity location is adjacent to the
starting parking location, then only a walk trip, from the starting activity location to the
ending activity location is generated, and an entry is made in the anomalous activity file.

When an activity has a mode string of wcwtw (outbound) or wtwcw (returning), it is
assumed that the car should be parked at a park and ride lot. These lots are designated as
such in the TRANSIMS Network parking table (configuration file key:
NET_PARKING_TABLE). Park and ride lots may also be used on non-park and ride trips.

2.7 Shared Rides

A shared ride is one in which a passenger travels in an automobile driven by another
traveler. Shared rides in which the passenger and the driver are part of different
households (interhousehold shared rides) are supported as long as the household
dependencies are indicated in the Household file. The driver trip request is planned as
usual. Any passenger trip requests are fulfilled, after all of a household’s non-passenger
trips have been planned, by using information from the driver plans.

The driver and passenger trip requests are matched according to the following procedure.
The trip requests for a passenger with a particular driver are listed in the order that they
occur in the activity file. The driver trip requests that include the passenger are also listed
in activity file order. The driver and passenger trip requests are then matched in order
according to these lists. This process is repeated for every combination of driver and
passenger that occurs in a household. If there are not enough driver trip requests to satisfy
all of the passenger trip requests, the passenger activity is listed in the anomalous activity
file with an anomaly type of Invalid Shared Ride. The condition where there are too
many driver trip requests is not detected.

Because of interdependencies between travelers (a passenger in the morning may be a
driver in the afternoon), a passenger activity may be planned before the corresponding
driver activity. Room for the passenger trip is left in the plan sequence according to the
desired activity times. If the driver trip is longer than expected (e.g., because of
congestion), there may not be enough time between activities in the passenger plan. In
this case, the activity leg following the passenger trip is shortened to accommodate the

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 11

transportation leg and the activity is recorded in the anomalous activity file with the
anomaly type Invalid Shared Ride Time. If the passenger trip extends past the end of the
upper bound of the following activity, the remaining activities for the passenger are not
planned.

2.8 Anomalous Activity File

There are currently seven types of anomalous activities recognized by the Route Planner:
No Path, Invalid Time, Invalid Shared Ride, Invalid Shared Ride Time, Connectivity,
Location, and Parking (see Table 3). These data can be used by the Selector/Iteration
Database module to request new activity characteristics for the traveler of the household.
An error anomaly prevents the planning of the rest of the activities for a traveler, while a
warning anomaly does not.

Table 3. Types of anomalies.

Anomaly Type Number Severity
No Path 1 Error
Invalid Time 2 Warning
Invalid Shared Ride 3 Error
Invalid Shared Ride Time 4 Subtype 1,3: Warning

Subtype 2,4: Error
Connectivity 5 Warning
Location 6 Error
Parking 7 Warning

For each activity in which an anomaly is detected, a line is written to the anomaly activity
file (configuration file key: ROUTER_PROBLEM_FILE). The first eight fields (see

Table 4) of each line are the same for each type of anomaly. These fields describe the
activity for which an anomaly was detected, the trip generated for this activity, the type
and subtype of anomaly detected, and the number of anomaly-specific fields remaining.
If no trip was generated for this activity, then the TripId and LegId fields are set to -1.

Table 4. Anomalous activity file common fields.
Field Description
HouseholdId ID of the anomalous household.
TravelerId ID of the anomalous traveler.
ActivityId ID of the anomalous activity.
TripId ID of the trip generated by this activity.
LegId ID of the first leg generated by this activity.
ProblemType Type of anomaly (See Table 3)
Problem Subtype Subtype of an anomaly, type dependent.
Number of data fields Number of remain fields, varies by anomaly type.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 12

2.8.1 No Path Anomaly

A No Path anomaly takes place when a trip request cannot be satisfied because a path
from the source location to the destination location which obeys the time and mode
constraints could not be found. Common reasons for this anomaly include no
connectivity between the source location and the destination location, and no transit
vehicles running after the start time. The No Path anomaly includes information about the
source and destination accessories, the mode, and the start time of the transportation leg.
When a No Path anomaly is detected, no plan is generated, and the rest of the activities
for this traveler are skipped. Table 5 describes the subtypes of the No Path anomaly.

Table 6 describes the No Path fields. The maximum trip length, leg length, and number
of nodes searched can be set with the configuration file keys ROUTER_MAX_TRIP_TIME,
ROUTER_MAXIMUM_LEG_LENGTH, and ROUTER_MAXIMUM_NODES_EXAMINED,
respectively.

Table 5. No Path Subtypes

Subtype Value Description
No path exists 1 No path exists with the requested mode, at the requested time.
Trip Length 2 The activity starts past the end of the simulation.
Leg Length 3 The trip leg is too long.
Max Nodes 4 The maximum number of nodes has been searched.

Table 6. No Path fields.

Field Description
SourceLocation The source location of the anomaly trip.
SourceType The source location type of the anomaly trip.
DestinationLocation The destination location of the anomaly trip.
DestinationType The destination location type of the anomaly trip
Mode The travel mode of the anomaly trip
StartTime The time the anomaly trip should start.

2.8.2 Invalid Time Anomaly

An Invalid Time anomaly occurs when the actual time used by the Route Planner does
not fit within the bounds specified by the activity. The start time, end time, and duration
are checked for consistency with the ranges given in the activity. A separate line in the
anomalous activity file is output for each one of these times that is inconsistent. The line
contains the type of the inconsistency, the lower and upper bound from the activity file,
and the actual value used by the Route Planner. A plan is generated for the anomalous
activity using the inconsistent times. Table 7 describes the Invalid Time fields.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 13

Table 7. Invalid Time fields.

Field Description
TimeType The field that has the anomaly 0-Start, 1-End, 2-Duration.
LowerBound The distribution lower bound.
UpperBound The distribution upper bound.
Actual The actual value used.

2.8.3 Invalid Shared Ride Anomaly

An Invalid Shared Ride anomaly occurs when the driver activities and passenger
activities do not match up. Currently, only the condition where there are too few driver
activities for the number of passenger activities is detected. When this anomaly is
detected, no plan is generated for the passenger and the rest of the passenger’s activities
are not planned. The driver activities are planned as usual. No extra fields are output for
this anomaly.

2.8.4 Invalid Shared Ride Time Anomaly

An Invalid Shared Ride Time anomaly takes place when the transportation leg for a
passenger-shared ride takes longer than the time between the two surrounding activity
legs. If the trip extends past the upper bound of the following activity’s start time, but not
past the following activity’s end time, an Invalid Shared Ride Time entry is created in the
anomalous activity file, and the rest of the passengers trip requests are planned. If the trip
extends past the end time of the following activity, an Invalid Shared Ride Time entry is
created in the anomalous activity file, and no further trips are planned for this traveler.
The Invalid Shared Ride Time anomaly contains the arrival time of the passenger-shared
ride trip, the upper bound of the start time of the following activity, and the end time of
the following activity. Table 8 describes the subtypes of the Invalid Shared Ride Time
Anomaly, while Table 9 describes the Invalid Shared Ride Time fields.

Table 8. Invalid Shared Ride Time subtypes.

Subtype Value Description
Driver Late 1 The driver was late, but the length of the following activity

was adjusted to compensate.
Driver Very Late 2 The driver was too late to be accommodated.
Passenger Late 3 The passenger was late, but the length of the following activity

was adjusted to compensate.
Passenger Very Late 4 The passenger was too late to be accommodated.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 14

Table 9. Invalid Shared Ride Time fields.

Field Description
Arrival Time The arrival time of the passenger-shared ride trip.
Start Time Bound The upper bound of the starting time of the activity leg following the

passenger-shared ride trip.
Stop Time The stop time of the activity leg following the passenger-shared ride

trip.

2.8.5 Connectivity Anomaly

A Connectivity anomaly occurs when there does not exist a process link from the
destination parking location to the final activity location. When this happens, a plan is
still produced as this process link is not included in the output plan. Table 10 describes
the Connectivity fields.

Table 10. Connectivity fields.

Field Description
Accessory Id ID of the destination activity location.
Accessory Type Type of the destination activity location.
Parking Id ID of the destination parking location.

2.8.6 Location Anomaly

A Location anomaly occurs when the source activity location or destination activity
location specified in the activity file or the vehicle location specified in the vehicle file
cannot be located in the TRANSIMS transportation network. Table 11 describes the
Location fields.

Table 11. Location fields.

Field Description
Accessory Id ID of the accessory that cannot be found.
Accessory Type Type of the accessory that cannot be found.

2.8.7 Parking Anomaly

A Parking anomaly occurs when the origin parking location and destination parking
location are identical. This occurs when a drive trip is specified between two activity
locations that share a parking location. A walk trip between the two activity locations is
generated. Table 12 describes the Parking fields.

Table 12. Parking fields.

Field Description
Source Activity ID of the origin activity location.
Destination Activity ID of the destination activity location.
Parking Id ID of the common parking location.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 15

2.9 Network Layers

The Route Planner conceptually views the network as a set of interconnected, unimodal
layers (see Fig. 3). In other words, a separate layer exists for each mode letter in the mode
string. At certain designated locations (which becomes nodes in the Route Planner’s view
of the network) in each layer, a special link, called a process link, connects one or more
of the unimodal layers to another. These process links allow intermodal transitions to take
place.

walk

auto

bus

light railrail stop

bus stop

parking lot

activity
location

pr
oc

es
s

lin
k

Fig. 3. A high-level depiction of the various layers used by the Route Planner. From
individual traveler preferences and constraints contained in the synthetic population and
activities data blocks, the Route Planner plans for trips that consist of multiple modal
legs (e.g., walk-car-walk). Constructing multiple layers in which each layer can be
encoded as a different unimodal network allows for the efficient calculation of trips
constrained by modal sequences. Also shown are the process links connecting the
unimodal networks.

The process links are considered to be part of the walking layer. The layers are
constructed from the TRANSIMS Network. Delays for each link in each layer are
computed by a link delay function, which is time-dependant. Link delays are further
explained in Section 3.7.1.

Conceptually, layers are associated with modes of travel. In this view, there are three
types of layers in the network:

1) A street layer, which consists of all links between intersections, and parking
locations.

2) A walk layer, which consists of all streets that can be walked along and activity
locations. However, the parking locations and transit stops that belong to the other
two layers are accessible only from activity locations via process links.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 16

3) Transit stops and links to transit layers, which can be traversed in transit (e.g., bus or
light rail) modes only. There is a separate layer for each type of transit vehicle
(e.g., bus and light rail), and a layer for each transit route via process links.

In Fig. 4, nodes A and B are street nodes. They correspond to original TRANSIMS
Network nodes. Nodes P and Q are parking locations, whereas R and S are activity
locations. Nodes C and D are transit stops. The links between layers are called process
links.

Conceptually, nodes A and B appear in two different layers, even though these
appearances correspond to the same TRANSIMS nodes. The reason for this is that even
though we might be in the same geographic location (whether in a street or walk
network), we cannot change from the street to the walk network without visiting an
activity location and using a process link.

Fig. 4. Conceptual diagram of the Route Planner network, in which parking accessories
(P,Q) are in the street layer, activity locations (R,S) in the walk layer, and transit stops
(C,D) in the transit layers.

2.9.1 Example

The Activity Generator provides mode preferences for each trip. This information is
captured in simple, alphabetical expressions. For example, wcw represents a trip that
breaks down as follows:

• w = a walking leg from a traveler’s house to his or her car.

• c = a car leg to parking at the place of work.

• w = a walking leg from the parking lot to his/her actual work location.

For the first leg of the trip (the walking leg), the Route Planner searches for possible
paths within the walking layer of the network to obtain a walking route from the home to
the parking location of the individual’s vehicle. After the walking path is found, a series
of least-cost driving links is found to obtain a route to a parking location near the work
location. A walk route is then developed to move the traveler from the parking lot to the
work activity location.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 17

The last two legs of the above route highlight the Route Planner’s capabilities. Once the
search algorithm is in the car layer, it chooses additional links from the car layer or parks
the vehicle and chooses links from the walking layer—whichever is lower in cost. The
Route Planner ensures that the final link is a walking link in this example.

Trips that cannot be feasibly planned or that contain questionable legs are marked and
provided as output from the Route Planner in the form of the Route Planner anomalous
activity file (configuration file key: ROUTER_PROBLEM_FILE). These are fed back to the
Activity Generator to choose a new activity time or location or mode of travel.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 18

3. ALGORITHM

3.1 High-Level Description

To maintain computational efficiency, the TRANSIMS Network is converted to an
internal route network (this is described in Section 3.2 of this chapter). The internal route
network represents a weighted, directed graph. The graph’s nodes represent intersections
and accessory locations (such as parking accessories, activity locations, and transit stops);
the arcs (directed edges) represent travel possibilities between node pairs. Internally, all
links are unidirectional. Bidirectional TRANSIMS links are represented by two separate
links in the Route Planner.

The algorithm underlying the TRANSIMS Route Planner is the classical Dijkstra’s
algorithm, which finds the shortest paths in a weighted, directed graph. This algorithm
can be viewed as a breadth-first search of the graph, starting at the origin node and
visiting the other nodes in the order of their (shortest-path) distance from the origin. The
actual algorithm used is a direct generalization of Dijkstra’s algorithm. In fact, it can be
viewed as Dijkstra’s algorithm on a larger graph. In full generality, it is described by
Barrett, Jacob, and Marathe.1

3.2 Route Planner Internal Network
The Route Planner uses information from the TRANSIMS Network and some other files
to create the Route Planner Internal Network representation, hereafter referred to as the
“internal network”. The reason for the internal network is to increase the efficiency of the
path-finding algorithm.

3.3 Terminology
1) Node – A physical location in the TRANSIMS Network, such as an intersection,

activity location, or bus stop.

2) Link – A street connection from the TRANSIMS Network. Every link has a delay, a
layer, and one or more modes of travel associated with it.

3) Edge – A connection between two nodes. Each edge has an associated link and a
fraction of the link that it represents.

3.4 Example Transformation

One of the main differences between the TRANSIMS Network and the internal network
is that the edges in the internal network are all unidirectional. Any bidirectional links in
the TRANSIMS Network are converted to a pair of unidirectional links in the internal
network, one in each direction.

1 C. Barrett, R. Jacob, and M. Marathe: “Models and Efficient Algorithms for Routing Problems in Time-dependent and Labeled
Networks,” Proc. 6th Scandinavian Workshop on Algorithm Theory, LNCS 1432.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 19

There is a node in the internal network for each node in the TRANSIMS Network, as
well as each parking location, activity location, and transit stop.

Each link in the TRANSIMS Network can have accessories attached to it. These
accessories represent activity locations, parking, and transit stops, and become additional
nodes in the internal network. Transit stops are described in more detail below. Activity
locations are placed on the layer specified in the TRANSIMS Network activity location
table, while parking locations are always placed on the street layer. For ease of
discussion, the following examples assume that all activity locations are placed on the
walk layer.

The TRANSIMS Network representation of two nodes with a connecting bidirectional
link is shown in Fig. 5. There are six parking locations and five activity locations,
connected by process links as shown. One of the parking locations has been designated as
a commuter park-and-ride lot.

Fig. 5. The TRANSIMS Network representation of two intersection nodes with a
connecting bidirectional link.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 20

The corresponding nodes and edges of the internal network representation are shown in
Fig. 6. The single link between the two intersection nodes in the TRANSIMS Network
has been transformed into four unidirectional links. There is one link in each direction in
the street network, as well as a link in each direction in the walk network. If a traveler
must park at a park-and-ride lot (i.e., has a mode string of wcwtc), the Route Planner
ensures that the traveler passes through the park-and-ride layer when going from the
parking locations to the activity location. This is done by internally using the mode string
wcpwtw, where p indicates that the traveler must travel on the park and ride layer.

Fig. 6. The corresponding nodes and edges of the Route Planner Internal Network
representation.

The edges connecting the two intersection nodes have fraction 1.0. The edges that
connect the parking locations are assigned fractions according to the length of the link
and the offset of the parking location from the node. The edges connecting the activity
locations are similar.

If a link in the TRANSIMS Network does not allow walking, such as a freeway link, any
activity locations along that link are still connected by edges in the walk layer. However,
no edges are placed between the activity locations and the intersection nodes.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 21

Fig. 7 shows a TRANSIMS Network that is similar to the one shown in Fig. 5, with the
exception of a unidirectional link in place of the bidirectional link.

Fig. 7. This TRANSIMS Network is similar to the one shown in Fig. 5, with the exception
that this one has a unidirectional link in place of the bidirectional link.

As can be seen from Fig. 8, there are edges in one direction only on the street layer.
However, there are still edges in both directions on the walk layer. This is because
walking can always be performed in either direction.

Fig. 8. This figure shows that there are edges in one direction only on the street layer.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 22

3.5 Network Assumptions made by the Route Planner

• No location (parking or activity) is located off the end of its link. Their locations on a
link in TRANSIMS are specified by the distance from the endnode of the link (the
value called “offset”). The Route Planner assumes that no offset is negative, and that
every offset is less than the length of the corresponding link. If this assumption is not
satisfied, the Route Planner prints warnings. It proceeds in planning, but its behavior
(especially with respect to calculating distances) is not defined.

• No two parking locations lie on the same link and have the same offsets.

• Each activity location is adjacent to a parking location. (This is not important if no
trips are planned from the activity location that starts with wc or to the activity that
ends with cw). This restriction will be removed in a future version of the Route
Planner.

3.6 Transit
Information about the transit system comes from the TRANSIMS Network transit stop
table (configuration file key NET_TRANSIT_STOP_TABLE), the transit route file
(configuration file key TRANSIT_ROUTE_FILE), and the transit schedule file
(configuration file key TRANSIT_SCHEDULE_FILE).

Each transit stop in the transit stop table is represented by a node in the transit layer for
each type of transit that serves that stop. Each route in the route file has its own layer,
containing a node for each stop on the route called route nodes. There are process links
connecting each transit stop to the corresponding route nodes. The delays for these
process links are given by the ROUTER_GET_ON_TRANSIT and
ROUTER_GET_OFF_TRANSIT configuration file keys. The route nodes are connected by
links, in the order that the route nodes appear in the route file. The stops in a particular
route must be unique.

Each transit stop must be explicitly connected to the walk network with process links to
appropriate activity locations. The delays for the route links are taken from the route
schedule file. The delays for these links are represented by a piecewise constant delay
function.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 23

Fig. 9 shows the TRANSIMS Network representation of two streets with bus stops and
two bus routes connecting them.

Fig. 9. TRANSIMS Network representation of two bus routes.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 24

Fig. 10 shows the corresponding Route Planner Internal Network representation. Note
that there are five different layers in the internal network:

• the street layer containing the intersection nodes,

• the walk layer containing the activity locations,

• the bus layer containing the bus stops, and

• a layer for each bus route.

Fig. 10. Route Planner Internal Network representation corresponding to Fig. 9.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 25

Fig. 11 and Fig. 12 show a more complex example with two bus routes and a light rail
line. Note that there is only one transit stop for both bus and light rail in the TRANSIMS
Network, but separate stops for different types of transit in the internal network.

Fig. 11. TRANSIMS Network representation of a complex transit network with two bus
routes and a light rail line.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 26

Fig. 12. Route Planner Internal Network representation corresponding to Fig. 11.

3.7 Cost

There are several ways to determine the “cost” of a trip. The Route Planner uses travel
time to determine the shortest path through the transportation network. It also computes
monetary cost and distance. The Generalized Cost Function is not yet supported.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 27

3.7.1 Travel Time

Each link has a delay associated with it. Links on the street layer have a delay for driving
on that link. Links on the walk layer have a delay for walking on that link. Transit links
have a delay for the time arriving at a transit stop and the time at which the transit vehicle
may be exited at the following stop. This delay takes into account the time spent waiting
for the transit vehicle to arrive, based on its schedule. Delays can either be constant, such
as walking delays, or dependant on the time of day.

The default delay for a street link is the free speed delay. It is calculated from the free
speed on that link and the length of the link. The actual delays calculated by the Traffic
Microsimulator are used to provide more accurate information. These delays are given in
the link delay file (configuration file key: ROUTER_LINK_DELAY). Each delay represents
the average delay experienced for the vehicles that traversed the link, averaged over a 15-
minute interval.

In order to reduce the amount of link delay information used by the Route Planner, the
configuration file keys ROUTER_LINK_DELAY_MIN_COUNT and
ROUTER_LINK_DELAY_MIN_VCOUNT may be specified. If the count field of the link
delay file (the number of vehicles that left the link) is below the number specified, the
data is not used. The same holds true for vcount (the number of vehicles remaining on
the link). The reasoning is that if only a few vehicles are traveling on a link, the speed is
near free speed, so the extra data is not needed.

If a link has lanes that are reserved for HOV vehicles, two link delay values are
calculated: one for HOV lanes, and one for non-HOV lanes. If data exists for only one of
these lane groups, free speed delay is used for the other group. If a link has only HOV
lanes, the delay for non-HOVs is infinite. A different number of occupants to be
considered an HOV can be specified for different links, but must be the same across all
HOV lanes on a single link.

The delay for walking or biking on a link is determined from the length of the link and
the walking speed (configuration file key: ROUTER_WALKING_SPEED) or biking speed
(configuration file key: ROUTER_BIKING_SPEED). There are also delays for entering
transit vehicles (configuration file key: ROUTER_GET_ON_TRANSIT_DELAY) and exiting
transit vehicles (configuration file key: ROUTER_GET_OFF_TRANSIT_DELAY). The
transit delays are used to keep travelers from changing transit vehicles to save a few
seconds of travel time.

Process links can also have a delay associated with them. For example, the delay
involved in parking a vehicle in a lot can be represented by the delay on the process link
from the parking location to any adjacent activity locations.

To increase the effectiveness of Traffic Microsimulator/Route Planner feedback, noise
can be added to the link delays. The maximum amount of noise to add to the link as
percentage of the link delay can be specified (configuration file key:
ROUTER_NOISE_DELAY). If the delay for a link is d and the specified noise percentage
value is n, the reported delay will be in the interval (d-nd, d+nd). Fractional links that are

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 28

used to access parking accessories always have the maximum amount of noise added to
them. This is to ensure that traveling on the partial links is always at least as expensive as
traveling on the associated full link.

3.7.1.1 Heuristics

To increase performance, the links that the Route Planner examines can be reduced. This
is done by artificially increasing the delay for links that lead in the wrong direction. For
example, assume that the source location for a trip is in the southern part of the network
and that the destination location is directly north. Links that head north will be preferred
over links that lead east or west. The farther from north that a link leads, the less likely it
is that the link will be considered.

The Sedgewick-Vitter heuristic can be used for Euclidean graphs. The heuristic allows
finding almost optimal shortest paths between nodes in a Euclidean graph. A parameter
called overdo (configuration file key: ROUTER_OVERDO) allows for a tradeoff between
the running time and optimality of the paths found. The internal network is not strictly
Euclidean, since only certain nodes may be reached from each node (the graph is not
complete), but we have found that the paths produced with moderate values, such as
overdo = .25, look quite realistic and bring a considerable improvement to running
time.

However, if this heuristic is used, the plans will be less sensitive to feedback (i.e.,
changing the link delays). The larger the value of overdo, the longer congestion will be
tolerated by the Route Planner before alternative routes are taken.

In addition, with overdo turned on, certain geometric configurations in the network will
cause the Route Planner to prefer low-speed links that head in the correct direction over
high-speed links that head in an incorrect direction. For example, the Route Planner may
create a plan that causes a traveler to exit a freeway via a ramp, only to reenter several
links later, rather than remaining on the freeway.

If the value of overdo is 0, and the delay noise is 0, then the optimal (i.e., least cost) path
will be found for the particular mode string used.

3.7.2 Distance

For each route, the distance traveled by traversing the route is calculated. The distance for
a transit leg is the sum of the Euclidean distances between each pair of transit stops. For
auto, walk, and bike legs, the distance is the sum of the length of the links traveled. For
magic move legs, the distance is the Euclidean distance between the source and
destination activity locations.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 29

3.7.2.1 Monetary Cost

In addition to travel time delay, process links can also have an associated monetary cost.
This can be used to account for parking fees, transit fares, and tolls. All costs are
expressed as cents.

The cost of parking is represented by the cost on the process links from the parking
accessory to any connected activity locations in the Process Link Table.

There are two types of transit costs, referred to here as fixed fare and variable fare. Fixed
fare means that the fare is calculated based on where the transit vehicle is entered,
regardless of where it is exited. A variable fare depends on where the transit variable is
entered and exited.

A fixed fare is handled similarly to parking costs. The price of the fare is the process link
cost from activity location to transit stop in the Process Link Table.

A variable fare is handled by transit fare zones (TFZ). Each transit stop is assigned a
TFZ. The transit fare table contains the cost of traveling between each pair of TFZs by
transit type. More information can be found in Volume Two (Networks and Vehicles)
Section 2.1.3.

Any individual links that have a cost associated with them (e.g., tolls) can be listed in the
link cost file (configuration file key ROUTER_LINK_COST_FILE). This file contains
pairs of link ID and cost.

3.7.2.2 Generalized Cost Function

To more accurately model mode choice, the concept of a generalized cost function (GCF)
has been developed. The GCF allows other factors in addition to travel time and
monetary cost, to be taken into account when determining a plan for a traveler. These
other factors are included in the “cost” of a trip. The importance of the monetary cost of a
trip may be modified depending on a traveler’s income. A greater penalty for traveling on
congested links can be imposed by calculating the difference between actual delay and
free speed delay. Transit transfers may impose a higher cost than the actual delay
involved. The GCF currently reported is simply the travel distance.

3.7.3 Current Limitations

There are several limitations to the way the cost and distance are currently computed.
These may be fixed in a future version. Fixed transit costs and transit distances are all
combined in the first transit leg if multiple routes are used in one trip. For example, the
trip in Table 13 will be reported as in Table 14.

Table 13. Actual trip.

Leg Mode Distance Monetary Cost
w 0.5 km 0
t – Bus Route 1 2.0 km 100

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 30

w 0.1 km 0
t – Bus Route 2 1.5 km 150
w 0.1 km 0

Table 14. Reported trip.

Leg Mode Distance Monetary Cost
w 4.2 km 250
t – Bus Route 1 0 km 0
w 0 km 0
t – Bus Route 2 0 km 0
w 0 km 0

Similarly, distance and parking costs for the walk leg from the parking location to the
activity location are included in the auto leg of the trip.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 31

4. ROUTE PLANNER RUNTIME CONFIGURATION

4.1 Logging Configuration File Keys

The amount of information output by the Route Planner can be controlled in several
ways. The logging configuration file keys LOG_ROUTING, LOG_ROUTING_DETAIL, and
LOG_ROUTING_PROBLEM control the amount of logging information generated. Logging
information is normally sent to standard output. The configuration file key
ROUTER_LOG_FILE can be used to direct the logging output to a specific file.

LOG_ROUTING generates information about the general progress of the Route Planner.
This can normally be turned on (set to 1 in the configuration file).
LOG_ROUTING_DETAIL generates copious amounts of logging on information and is
normally turned off for normal execution. LOG_ROUTING_PROBLEM duplicates the
information in the Route Planner anomalous activity file.

If the configuration file key ROUTE_DISPLAY_PATHS is set to 1, the Route Planner will
generate the specific nodes traversed for each path found, even for unsimulated modes
such as walk. Setting this configuration file key will generate large amounts of output.

If the configuration file key ROUTER_TIME_REPORT_INTERVAL is set to a value n
greater than zero, each thread will report timing information after every n households are
processed. The values reported include the number of activities per second processed
since the last report, and the number of activities per second processed since the start of
routing.

4.2 Other Configuration File Keys

There are several other configuration file keys that can affect the execution of the Route
Planner. The configuration file key ROUTER_SEED allows the seed of the random number
generator to be set.

If the configuration file key ROUTER_COMPLETED_HOUSEHOLD_FILE is set, household
IDs will be written to this file as they are completed. This allows restart capability, as any
households whose IDs are in this file need not be replanned.

The configuration file key ROUTER_INTERNAL_PLAN_SIZE controls the size of data
structure used to store plans before they are written to the plan file. The size should be
larger than the largest possible number of nodes used in a path through the network. A
size of 1000 is sufficient for small networks, while 4000 may be needed for a large
network.

Normally, the nodes of the path for a walk trip are not included in the plan file because it
greatly increases the size of the plan file and is not needed by the current
microsimulation. If the configuration file key ROUTER_INCLUDE_WALK_PLAN_NODES is
set to 1, walk plans will be included in the list of nodes passed through by that plan.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 32

Appendix C provides a complete list of the Route Planner configuration file keys.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 33

5. PLAN RETIME
The program RetimePlans has the ability to change the duration of existing plans due to
updated link delay times or transit schedule files. No attempt at ensuring the validity of
retimed plans is made, only the duration of the plans is changed. Existing plans are read
from the plan file (configuration file key PLAN_FILE), and the duration of each selected
path is recalculated. The new plans are written to the retimed plan file (configuration file
key ROUTER_RETIME_PLAN_FILE). If the retime traveler file (configuration file key
ROUTER_RETIME_TRAVELER_FILE) exists, only plans for travelers whose IDs are in
this file will be retimed and written to the retimed plan file.

If the configuration file key ROUTER_RETIME_MODES is specified, only plans with the
given modes will be retimed. Currently, only retiming of auto plans is supported.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 34

6. ROUTE PLANNER UTILITY PROGRAMS

6.1 MakeHouseholdFile Utility

The MakeHouseholdFile utility allows the creation of a set of household files that
collectively contain all of the households contained in the population file (configuration
file key ACT_POPULATION_FILE) or an existing household file. The program is
executed as

 MakeHouseholdFile <configuration file> <number>

where number is the number of household files to create. The household files are named
according to the configuration file key ROUTER_HOUSEHOLD_FILE in the configuration
file, with the number of the processor appended as .txx, where xx is the rank expressed as
a two-digit base-26 number (i.e., the sequence is AA, AB, .. AZ, BA, BB, …).

If the file specified by the configuration file key ROUTER_HOUSEHOLD_FILE (without
any extra extension) exists, then the list of household IDs is read from this file.
Otherwise, the list of household IDs is read from the population file.

To support interhousehold shared rides, the dependant household file (configuration file
key ROUTER_DEPENDANT_HOUSEHOLD_FILE), if it exists, is read. Each line of this file
contains a list of household IDs of the travelers that share trips, either as a driver or
passenger. These IDs must also be listed in the Route Planner household file.

6.2 10to26 and 26to10 Utilities

The utilities 10to26 and 26to10 are simple utilities for converting between base-10 and
base-26.

 10to26 <integer>

will output the base-26 representation of integer.

 26to10 <XX>

will output the base-10 representation of the base-26 number ‘XX’

6.3 CatIndices Utility

The CatIndices utility provides merging of TRANSIMS route plan indices to produce a
combined and sorted index. CatIndices has been optimized to concatenate and resort
indices much faster than the alternative utility, PlanFilter. Plan files are indexed by
traveler (.trv.idx) or by time (.tim.idx). CatIndices creates either the traveler index using
an existing time index or a time sorted index using a traveler index. It is assumed that
either the time or traveler sorted index, as appropriate, exists and is up-to-date for each of

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 35

the input plan file arguments. The default is to create a time-sorted index from an existing
traveler index(es).

Format:

 % $TRANSIMS_HOME/bin/CatIndices [-h] [-f] <outIndexName> <PlanFile> [<PlanFile>...]

where

 -h Prints a description of the program and the allowed arguments

 -f creates a travel-sorted index from an existing time-sorted index(es)

Example:

 % $TRANSIMS_HOME/bin/CatIndices plans.all plans.all.[0-9]*[0-9]
 % $TRANSIMS_HOME/bin/CatIndices -f plans.all plans.all.[0-9]*[0-9]

The first command creates the time-sorted index "plans.all.tim.idx" from existing
traveler-sorted indexes "plans.all.[0-9]*[0-9]. The second command creates the traveler-
sorted index "plans.all.trv.idx" from existing time-sorted-indexes "plans.all.[0-9]*[0-9]".

6.4 PlanFilter Utility

The PlanFilter utility provides sorting. merging, selection, and validation of plans. It
constructs two indexes for each input and output plan file it touches—one sorted by time,
and the other by traveler. Currently, existing indexes are used if they are up-to-date. All
times are measured in seconds since midnight.

If the -v option is used, only valid plan sequences are included in the output indexes, and
a brief description of errors encountered in each plan is written to standard output. Use of
this option is recommended before using any plan file in the Traffic Microsimulator
because it can detect many errors that are likely to cause the simulator to crash.
PlanFilter can detect the following conditions in any plan:

• Trip and leg ID sequence errors; that is, IDs out of order or not consecutive—flagged
as "bad trip id" and "bad leg id" respectively.

• Leg not starting from the previous leg's destination or starting locations not found in
the network tables—flagged as "bad start accessory".

• Destination not found in the network tables—flagged as "bad end accessory".

• Leg's departure time earlier than previous leg's estimated arrival time—flagged as
"bad activation time".

• Zero or negative duration—flagged as "bad duration".

• Estimated arrival time earlier than departure time—flagged as "bad stop time".

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 36

If the leg requires driving, PlanFilter will also detect the following conditions:

• Links or nodes not found in the network tables or not contiguous—flagged as "bad
route".

• Driver moving from one link to another with no lane connectivity between them—
flagged as "no allowed lane for turn".

• Driver moving from any link onto the same link—flagged as "plan requires U-turn".

If the VEHICLE_FILE configuration file key is set in the configuration file specified with
the -v command line argument, PlanFilter can use information in the Lane Use table and
the vehicle restriction field of the Link table. In this case, it detects the following
conditions:

• Driver is using a non-existent vehicle—flagged as "vehicle not found in vehicle file".

• Driver attempts to drive down a link which does not allow the type of vehicle being
used—flagged as "violates vehicle restriction on link".

• Vehicle is not allowed in lane required for moving to the next link. (For example, a
car using a bus-only left turn lane). This is also flagged as "no allowed lane for turn".

Not all of these conditions are considered serious enough to invalidate the plan and
prevent it from being included in the output indexes. In particular, U-turns are not
prohibited (unless there is no lane connectivity allowing a U-turn at the desired node) and
missing vehicles are not considered a problem. Processing is discontinued for each leg
until a serious error is encountered. All plan legs up to the first invalid leg for a traveler
are included in the output.

Usage:
PlanFilter [-h] [-d] [-f] [-w] [-v netConfigFile] [-s startTime] [-e endTime] [-t
travId]* [-r <travFile>] [-o <outFile>] <planFile>*

where:

h = print this message
d = defragment the file: create a new plan file containing the merged, filtered plans;
 the -o flag must accompany this flag
f = sort output by traveler
v = validate each trip chain:
 netConfigFile must be a TRANSIMS configuration file specifying a network
 database (Validation may be time-consuming.)
s = include only legs whose (estimated) departure time is >= startTime
e = include only legs whose (estimated) arrival time is <= endTime
t = include only legs for traveler travId; implies the -f flag
 (May appear an arbitrary number of times.)
r = include only legs for travelers specified in travFile; implies the -f option
 (May appear together with the -t options.)
o = place output in outFile; default is standard output

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 37

Arguments that do not start with “-” are assumed to be input plan files.

6.5 DistributePlan Utility

The purpose of the DistributePlan utility is to create a separate pair of indexes into a plan
file for each processor in a multiprocessor run of the microsimulation. Each leg of a trip
is assigned to the processor that has responsibility for the starting accessory of that leg.
This allows the processors to get travelers into the simulation more efficiently than if
each processor had to read in every leg, discarding those that it did not need.

DistributePlans uses a mapping from accessory type and ID to CPU number. This
mapping, or partition, is created during a simulation run as specified by the values of
certain configuration file keys. It is saved in a file specified by the
PAR_PARTITION_FILE configuration file key if the PAR_SAVE_PARTITION
configuration file key is set. Note that, if run time information is saved during the
simulation (using the PAR_RTM_INPUT_FILE) and that information is used to partition
the network on the next run (by setting the CA_USE_RTM_FEEDBACK configuration file
key), the partition can change from one run to the next.

DistributePlans can also generate the partition if none is present. In this case, the
partition can be saved and used by the microsimulation (by turning off both the
PAR_USE_METIS_PARTITION and PAR_USE_OB_PARTITION configuration file keys).

DistributePlans creates an index file for each processor in the partition, using a simple
naming convention that allows the individual slaves to find the correct index file if it
exists.

For each leg in a plan file specified by the PLAN_FILE configuration file key,
DistributePlans determines the starting location’s accessory type and ID. Next, it finds
the processor number assigned responsibility for that location. Finally, it places an index
entry for the leg in the file for that processor. The underlying data is not moved.

There is one additional task handled by DistributePlans. When a trip’s legs are
distributed, it becomes difficult for any processor to know whether a particular leg
represents the first or last leg a traveler will undertake during the course of the
simulation. This information is required because on a traveler’s first leg, the associated
object must be created within the simulation. On all other legs, the traveler object must
not be created—instead the simulation must wait for the traveler object to arrive at that
leg’s starting location before allowing it to continue. Similarly, but not quite as
importantly, efficient use of memory requires deleting the traveler object at the end of it’s
last leg.

DistributePlans ensures that the appropriate information about each traveler is made
available to the simulation. It places an index entry for the first leg of each traveler’s trip
into each distributed index. This, in combination with the ability of the microsimulation
to use both a traveler ID sorted index and a time sorted index allows it to correctly create
and destroy travelers.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 38

Usage:

 DistributePlans <config-file>

6.5.1 DistributePlan Configuration File Keys

The configuration file keys listed in Table 15 are used when a partition already exists.

Table 15. Configuration file keys if a partition exists.

Configuration Key Description
PAR_PARTITION_FILE Name of a file providing a mapping from nodes to processors. This file also

includes node coordinates, so it can be used to display the partition.
PLAN_FILE The name of a plan file to distribute over the partition.
NET_* The configuration file should also contain all the NET_ configuration file

keys.

The configuration file keys listed in Table 16 are used to generate a partition if one does
not already exist.

Table 16. Configuration file keys to generate a partition.

Configuration Key Description
PARTITIONER_USE_NETWORK_CACHE If set, the code will read in a binary cached version of the

network.
GBL_CELL_LENGTH The length of a CA cell in meters.
PAR_MIN_CELLS_TO_SPLIT Splitting short links can cause problems in the dynamics

of the microsimulation. No links with fewer cells than
this will be split.

PAR_SLAVES The number of processors in the partition.
PAR_RTM_PENALTY_FACTOR,
PAR_RTM_INPUT_FILE,
CA_USE_RTM_FEEDBACK

See the description in the software modules volume,
Microsimulation section on configuration file keys.

PAR_HOST_COUNT,
PAR_HOST_CPUS_<n>,
PAR_HOST_SPEED_<n>

These parameters are used to describe the machine
environment. Relative processor speed will be taken into
account when creating the partition.

PAR_USE_METIS_PARTITION,
PAR_USE_OB_PARTITION

If PAR_USE_METIS_PARTITION is set, the partition
will be determined using the METIS graph partitioning
library. If PAR_USE_OB_PARTITION an is set,
orthogonal bisection algorithm will be used. If neither is
set, the partition specified in the PAR_PARTITION_FILE
will be used.

PAR_SAVE_PARTITION The partition will be saved in PAR_PARTITION_FILE
only if this is set.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 39

6.5.2 Troubleshooting

If a very large number of processors are used, the algorithm may run into an operating
system limit on the number of open file descriptors allowed.

Distributing the indexes makes the plan-reading phase of the microsimulation more
efficient. However, there may be I/O considerations that are important when a large
number of processors are trying to gain access to the same underlying data files. This
problem could be addressed by using the PlanFilter tool to create a separate data file for
each of the indexes created and the IndexPlanFile tool to recreate the indexes, now
pointing at the distributed plan files instead of a global file.

6.6 CongestedLinks Utility

The CongestedLinks utility counts how many drivers intend to be on each link within a
specified time window. Its input is a plan file. The demand estimate it provides does not
take into account interactions among vehicles or capacity constraints and jam formation.
The output reports both raw counts and a count normalized by the number of lanes and
length of the time window, which is the effective maximum flow rate of each link in the
CA. The output can be fed directly into the output Visualizer as a Link Data format file.

Usage:

CongestedLinks [-h] [-i <time_inc>] [-t <threshold>] [-s <start_time>] [-e
<end_time>] <configFile> <planFile> <outFile>

All times are in seconds since midnight

The following are options:

-i specifies a time increment. Default = 900

-t specifies a threshold - only links whose density is over capacity by <threshold>
are included in the output

-h gives a help message

-s only vehicles on links after this time are counted. Default = 0

-e only vehicles on links before this time are counted. Default = 86400

The configuration file, plan file and log file names are all required, and must appear in
the order shown. Note that the configuration file should contain all NET configuration file
keys, and all ROUTER configuration file keys. The plans, however, are taken from the
specified plan file instead of the one specified by the PLAN_FILE configuration file key.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 40

Example:

Here is sample output from CongestedLinks:

TIME LINK NODE LANE norm_flow COUNT SUM to_node
8550 112192 46802 -1 0.0165278 14 104.156 46281
8550 112363 47203 -1 0.0165278 14 78.4505 46802
8550 112527 47703 -1 0.0153472 13 96.6039 47203
8550 112675 48180 -1 0.0177083 15 106.859 47703
8550 112777 48431 -1 0.0165278 14 60.6613 48180
8550 113482 49908 -1 0.0177083 15 144.165 49289
8550 114099 50911 -1 0.0100347 17 134.467 50348
8550 118278 57439 -1 0.0109091 9 24.2342 57468
8550 118283 57472 -1 0.0109091 9 24.317 57439

The SUM column is arbitrary and experimental; it can be safely ignored.

6.7 RearrangePlans Utility

Before the Traffic Microsimulator can execute the plans produced by the Route Planner,
some manipulation of the plan files is required. The Route Planner naturally distributes
computation across CPUs by household, producing approximately 50 individual plan
files, each containing plans for a different set of households. The Traffic Microsimulator
distributes computation across CPUs geographically and executes plans in time order for
the most part. While it is technically possible to use the plan files created by the Route
Planner directly in the Traffic Microsimulator, it is extremely inefficient because the
Microsimulation would be forced to open and close files and position them correctly for
reading each and every plan.

The necessary file manipulation has been automated in the script RearrangePlans. The
script is specific to the Linux cluster on which we are running, but can be tailored to other
architectures. This section gives a step-by-step description of the operation of this script
and other new utilities it requires, and describes why it is structured as it is.

The first step is to create indexes for each of the 50 or so plan files created by the Route
Planner, the transit driver plans, the truck driver plans, and the itinerant plans (which are
themselves split into separate files for the a.m., p.m., and mid-day peaks, and all the rest).
The indexes will be required in the next step. Since each of the indexes is completely
independent of the others, we can use a separate node for each one. (Although the cluster
we work on has two CPUs per node, it is usually more convenient to run only one job per
node). We invoke the executable IndexPlanFile for each plan file on a separate node and
wait for all of them to finish. The Route Planner creates plan files with a base name plus
the extension .txx where the xs are replaced with capital letters starting from AA, AB, and
continuing through the alphabet (e.g., <base>.tAA, <base>.tAB, etc. IndexPlanFile will
create the indexes <base>.tAA.tim.idx and <base>.tAA.trv.idx for the first plan file, and
similarly for the others.

The next step is to create plan files incorporating all of the population, transit, truck, and
itinerant plans in time-sorted order. These are the data files that will be used by the

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 41

Traffic Microsimulator. It is not crucial that all of the data be in a single file, only that it
be ordered by expected departure time. This part of the computation can be distributed by
allowing each CPU to consider only those plans whose expected departure time is within
a certain interval. Because we have enough nodes available and it is convenient for other
analyses, we have chosen to split the plan files into half hour pieces. Thus, each of 48
CPUs runs PlanFilter on all of the input plans, extracting only those whose departure
times are within a half-hour window. This fixed-time window does not result in an ideal
partition of the work, since many more trips start during peak travel times than, say, 4:30
- 5 a.m.

The plans for each half hour are placed in a file labeled by the end time of that window
(in seconds since midnight). For example, plans starting in the interval (7:00, 7:30] can
be found in <base>.27000. The corresponding indices <base>.27000.tim.idx and
<base>,27000.trv.idx are also created. The command that accomplishes this is:

 PlanFilter -d -o <base>.27000 -s 25201 -e 27000 <base>.tAA <base>.tAB ...

The -d argument causes a data file containing the plans to be created in addition to the
indices. Logging output from this command is placed in the file log.27000 in the
directory where the population plans reside.

The Traffic Microsimulator expects a single plan file name. As discussed in the indexing
section, only indexes for that plan file need exist. In this step, we create two indexes that
point to the 48 time-sorted, half-hour interval plan files created above. This process
cannot be distributed, since we are creating a single index from a set of them. However,
we will need to create two indexes (sorted by time and traveler), so we can do them
simultaneously on two CPUs. At our site, two of the cluster's nodes have large local
temporary disks. It is much more efficient to create the indexes on a local disk than
across NFS, so we use those two nodes. This step uses the utility CatIndices, which has
been optimized to concatenate and resort indexes much faster than the alternative,
PlanFilter. A command line argument specifies which of the two indexes (traveler or
time) it is to build, and other arguments where the result should go, and what the input
plan files are. The two commands are:

 CatIndices plans.all plans.all.[0-9]*[0-9]
 CatIndices -f plans.all plans.all.[0-9]*[0-9]

The first creates the time sorted index plans.all.tim.idx; the second creates the traveler
sorted index plans.all.trv.idx.

The final step needed to prepare plans for the Traffic Microsimulator is geographic
distribution of the time-sorted plans. Each CPU in the Traffic Microsimulator is
responsible for a different geographic area of the network. It only needs to read in plans
that start within that area. Other plans will be passed to the CPU in messages from other
CPUs as needed. If there are N CPUs in use, failing to distribute the plan files
geographically will cause each CPU to read roughly N times as many plans at it needs to,
slowing down the Traffic Microsimulator. Fortunately, we need not distribute the plan
data itself to each CPU. All that is needed is a CPU-specific index containing only the

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 42

plans that start on that CPU. These indexes are created in parallel (one process for each
CPU) using the executable DistributePlans.

After this step has been taken, the Traffic Microsimulator can be (and is) run using the
script RunCA. Sometimes it is also useful to run the Collator at this point, or the
CongestedLinks program to estimate demand as a function of time on each link from the
plan files.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 43

7. PLAN FILES

7.1 Overview

This section gives the protocol of the TRANSIMS plan file interface between the Route
Planner and the Traffic Microsimulator.

7.2 File Format

The TRANSIMS code supplies a library of C routines, as well as a TPlan C++ object that
can read and write this format.

The format consists of a required “header” and a set of “mode-dependent data.” The
header contains information common to every kind of leg. Code that uses the plans may
choose to ignore some or all of the mode-dependent data. For example, the Traffic
Microsimulator will not simulate walking or bicycling, but it will use the estimated
duration from the Route Planner.

Because the origin, destination, and expected duration of any leg are available in the
header information, the simulation does not require any data in the mode-dependent part
of a walk leg.

7.2.1 Data Definitions and Format

A plan file contains a series of records, each of which specifies a single leg of a traveler’s
trip. Each record contains the fields shown in the table found in Appendix A, in the order
shown, separated by white space [space, tab, and/or a single newline]. The field names
are not written in the data file. There is a blank line separating each pair of records. The
file is written in ASCII text. Efficiency concerns are addressed by accessing plan files
through an index. See the Index section for details.

The combination of duration, stop time, and max time allows flexible
specification of departure times. For example, attending a movie might be encoded as
follows:

 duration = 0 seconds;
 stop time = 20*3600 + 30*60 = 73800;
 maxTime = true;

which means, “this activity ends at 8:30 p.m., or as soon as the traveler arrives, whichever
is later.”

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 44

Similarly, work might be encoded as follows:

 duration = 8 hours;
 stop time = 17*3600 = 61200;
 maxTime = true;

which means “stay at work until 5:00 p.m., or eight hours after arrival, whichever is later.”

Shopping at lunch might be encoded as follows:

 duration = 0.5 hours;
 stop time = 12*3600 + 45*60 = 45900;
 maxTime = false;

which means “shop for half an hour or until 12:45 p.m., whichever is earlier.”

7.2.2 Mode-Dependent Data

Mode-dependent data are written by the Route Planner and interpreted by the Traffic
Microsimulator. Appendix B provides such data for review.

7.3 Plan Library Files

Table 17 records plan library files.

Table 17. Plan library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Source Files planio.c The plan data structures and interface functions.
 planio.h The plan interface functions source file.

7.4 Plan File Configuration File Keys

Appendix D provides a description of Plan File configuration file keys.

7.5 Example

Appendix E gives a six-leg plan for traveler 1. The plan consists of a walk-car-walk-bus-
walk scenario.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 45

Appendix A: Plan Data Definitions and Format

Column Name Description Allowed Values
Traveler (Person) ID Each person is given a unique ID in the

population file.
integer

User Field Available to the user to set as desired. Its value
is not used internally by the Traffic
Microsimulator, but is passed to the output
system for use in filtering.

integer

Trip ID Numbers the trips for the traveler sequentially
from 1. The trip ID is not used by the Traffic
Microsimulator.

unsigned 16-bit
integer

Leg ID Numbers the legs within a trip sequentially from
1.

integer

Activation Time The earliest time the simulation needs to worry
about this leg. It is generally the starting time
(estimated by the Route Planner) for a leg. For a
transit leg, however, it represents the arrival
time of the passenger at the transit stop, rather
than the arrival time of the transit vehicle.

integer: seconds
since midnight

Start Accessory ID Denotes the network accessory ID of the
starting location for this leg.

unsigned long
integer

Start Accessory Type Denotes the type of accessory of the
corresponding location. It is necessary because
the IDs are not globally unique over accessories.
It should be one of:
 1) activity location
 2) parking
 3) transit stop
as defined in TNetAccessory::EType of
NET/Accessory.h.

integer
enumeration

End Accessory ID As above, except it is for the destination rather
than the starting accessory.

unsigned long,
integer

End Accessory Type As above, except it is for the destination rather
than the starting accessory.

unsigned long,
integer

Duration In conjunction with Stop Time and Max
Time Flag, specifies how long this leg is
expected to take.

integer: seconds

Stop Time In conjunction with Stop Time and Max
Time Flag, specifies an absolute ending time
for this leg.

integer: seconds
since midnight

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 46

Column Name Description Allowed Values
Max Time Flag If true, the end of this activity is best estimated

as
 max(start time + duration; stop_time).
Otherwise, use the minimum instead. In the
simulation, the actual start time is used, rather
than the estimated activation time.

boolean

Cost Monetary cost of the trip, in cents. integer
GCF Generalized Cost Function. This is the value that

the Route Planner attempts to minimize when
planning travelers. Currently the same as
duration.

integer

Driver Flag True, if the traveler is driving a vehicle on this
leg.

boolean

Mode Mode of travel. This, together with the driver
flag, determines the interpretation of the mode-
dependent data following the header. Currently,
it must be one of:
 0 - car
 1 - transit
 2 - pedestrian
 3 - bicycle
 4 - non-transportation activity
 5 - not assigned
 6 - magic move
as defined in the TPlan::ETravelMode
enum of PLAN/Plan.h.

integer,
enumeration

Number of Tokens Number of white-space-separated tokens in the
mode-dependent data block (not including this
field itself).

integer

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 47

Appendix B: Mode-dependent Data

Table 18. Mode-dependent data for a car driver.

Data Description Allowed Values
Vehicle ID Each vehicle (with its ID) available in the simulation

is listed in the vehicle database.
integer

Number of
Passengers

The number of passengers, not including the driver,
on this leg.

integer

List of Node IDs The nodes (in order) through which the driver’s route
will pass.

integer

List of Passenger IDs The traveler ID of each passenger to be carried on
this leg.

integer

Table 19. Mode-dependent data for a car passenger.

Data Description Allowed Values
Vehicle ID Each vehicle (with its ID) available in the simulation is listed in

the vehicle database.
integer

Table 20. Mode-dependent data for a transit driver.

Data Description Allowed Values
Schedule Pairs Number of (stop ID, depart time) pairs Integer
Vehicle ID Each vehicle (with its ID) available in the simulation is

listed in the vehicle database.
Integer

Route ID Route IDs are specified in the transit route file. Only one
route ID is allowed per leg.

Integer

List of Node IDs The nodes (in order) through which the driver’s route will
pass.

Integer

List of Schedule
Pairs

Each pair consists of a stop ID and a depart time. When a
transit driver arrives at a transit stop whose ID is given in
this list, the driver will remain at that stop until the depart
time.

Integer, integer

Table 21. Mode-dependent data for a transit passenger.

Data Description Allowed Values
Route ID Traveler will board any transit vehicle whose driver’s plan

matches this Route ID.
integer

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 48

Table 22. Mode-dependent data for a pedestrian.

Data Description Allowed Values
List of Node IDs The nodes (in order) through which the traveler’s route

will pass.
integer

Table 23. Mode-dependent data for a magic move.

Data Description Allowed Values
Type Type of magic move plan.

 1 – school bus
 2 – other

integer

For activity legs, there is no mode-dependent data.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 49

Appendix C: Route Planner Configuration File Keys

Configuration File Key Description
ACTIVITY_FILE* Path to a TRANSIMS activity file.
LOG_ROUTING Turn on Route Planner logging. This produces

information about the status and progress of the
Route Planner. Default = 0

LOG_ROUTING_DETAIL Turn on detailed Route Planner logging. Produces
many messages. Default = 0.

MODE_MAP_FILE* Path to a mode file.
PLAN_FILE* Name of the file where plans should be written.

(Overwrites an existing file.)
ROUTER_BIKING_SPEED Speed to use when computing delays for walk

links traversed by bicycle (meters/second).
Default = 4.0

ROUTER_CORR Floating-point number, between 0 and 1. The
Route Planner will change the reported length of
a link to be equal to its Euclidean length
whenever the ratio of the two is less than this
value. This is done in order to avoid problems
when the Sedgewick-Vitter heuristic is used.
Default = 0.0

ROUTER_DELAY_NOISE Percentage of noise to add to link delays.
Default = 0

ROUTER_DEPENDENT_HOUSEHOLD_FILE File containing a list of household Ids per line that
have shared rides in common.

ROUTER_DISPLAY_PATHS If set to 1, list all of the nodes for each leg
planned. Note: This produces large amounts of
output.

ROUTER_FILTER_EXCLUDE_MODE Plan modes not include in plan file. Default it to
include no modes. Only one of INCLUDE_MODE
and EXCLUDE_MODE may be specified.

ROUTER_FILTER_EXCLUDE_VEHICLE Plan vehicle types not to include in plan file.
Default is to include no vehicle types. Only one
of INCLUDE_VEHICLE and
EXCLUDE_VEHICLE can be specified.

ROUTER_FILTER_INCLUDE_MODE Plan modes to include in plan file. Default is to
include all modes.

ROUTER_FILTER_INCLUDE_VEHICLE Plan vehicle types to include in plan file. Default
is to include all vehicle types.

ROUTER_GET_OFF_TRANSIT_DELAY Delay encountered when exiting a transit vehicle.
Default = 4 seconds

ROUTER_GET_ON_TRANSIT_DELAY Delay encountered when boarding a transit
vehicle.
Default = 3 seconds

ROUTER_HOUSEHOLD_FILE Path to a file containing a list of integer IDs for
householders to be planned.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 50

Configuration File Key Description
ROUTER_INCLUDE_WALK_PLAN_NODES Include node list in walk plans.
ROUTER_INTERNAL_PLAN_SIZE Positive integer. Should be enough to

accommodate the length (in number of nodes) of
the shortest path between any two nodes in the
network (and may need to be quite large when
multimodal plans are used). Default = 400

ROUTER_LINK_DELAY_FILE Feedback file from which to read link delays. If
the configuration file key is not present or the file
does not exist, the free speed delays are used.

ROUTER_LINK_DELAY_MIN_COUNT Minimum count in link delay file to include data
in link delay calculations.

ROUTER_LINK_DELAY_MIN_VCOUNT Minimum vcount in link delay file to include
data in link delay calculations.

ROUTER_MAX_LEG_LENGTH The maximum time (in seconds) of an individual
leg. Default = 7200 seconds

ROUTER_MAX_NODES_EXAMINED Maximum number of nodes examined before the
Router Planner will conclude that no path exists.
Useful mostly for large networks. Default =
400,000

ROUTER_MAX_TRIP_TIME If, while in the process of creating a route, the
partial route extends past
ROUTER_MAX_TRIP_TIME (specified in
seconds), the trip is aborted.
Default = 97200 (27 hours)

ROUTER_MESSAGE_LEVEL Level of warning messages to produce:
 -2 (ERROR)
 -1 (PRINT)
 0 (SEVERE WARNING)
 1 (WARNING).
Produces information about possible anomalies
the Route Planner has encountered. Default = 1

ROUTER_NUMBER_THREADS Positive integer. Number of worker threads to be
used. A value of 0 means no threads will be used.
Default = 0

ROUTER_OVERDO Non-negative floating-point number. If set to 0,
no adjustment is made to the distance estimates. If
positive, the search for the shortest path to the
origin will be biased in the direction of a straight
line to the destination. This will produce non-
optimal paths. The paths will still be reasonable,
but the heuristic may cause relatively small
congestion on links to be ignored, and this can
break the iterative relaxation mechanism.
Default = 0.0

ROUTER_PROBLEM_FILE* Path name to a file in which activities with
anomalies identified by the Route Planner are
written.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 51

Configuration File Key Description
ROUTER_SEED Seed to use for random number generator.

If the configuration file key is set to 0, use
process ID. Default = 0

ROUTER_WALKING_SPEED Speed to use when computing delays for walk
links (meters/second). Default = 1.0

ROUTER_RETIME_PLANS File containing plans of retimed travelers.
ROUTER_RETIME_TRAVELER_FILE File containing traveler IDs of travelers to be

retimed.
ROUTER_RETIME_MODES File containing modes to be retimed.
ROUTER_COMPLETED_HOUSEHOLD_FILE File containing household IDs for plans that have

been written to the household file.
TRANSIT_ROUTE_FILE File containing route of transit vehicles.
TRANSIT_SCHEDULE_FILE File containing schedules of transit vehicles.
ROUTER_TIME_REPORT_INTERVAL Defines how often to report routing speed.

0 = never report
VEHICLE_FILE* Path to a TRANSIMS vehicle file.

*Required.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 52

Appendix D: Plan File Configuration File Keys

Configuration File Key Description
CA_USE_PARTITIONED_ROUTE_FILES If this configuration file key is set, the Traffic

Microsimulator expects to find separate indexes
into a plan file for each slave. These can be
produced using a partition file and the
DistributePlans utility.

PLAN_FILE Location of a file containing plans, or the base
name of an index that points to plan files.
Used by the Route Planner for output and the
Traffic Microsimulator and Selector/Iteration
Database for input.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 53

Appendix E: Annotated Example of a Plan

Trip/Leg Plan Description
Trip 1/Leg 1 1 156 1 1

25200 123 1 456 2
33 25200 1
0 33
0 2
2
1000 1001

The user has chosen to mark this leg with the code 156, which has meaning only to
that user but will be duly reported in any output concerned with this leg. It is trip 1,
leg 1 for this traveler. The Route Planner expects the trip to start at 25200 = 7∗ 3600
= 7 AM. The leg will start at activity location 123 and end at parking accessory 456.
The Route Planner expects the trip to take 33 seconds. The traveler’s next leg will
begin upon arrival at the destination or 33 seconds after departure from the origin,
whichever is later. The trip will not cost anything, and the GCF is 33 seconds—the
same as the duration. The traveler is not driving a vehicle and is, in fact, walking
(mode = 2). There are two tokens of mode-dependent data, which in this case might
be the nodes traversed. The Traffic Microsimulator would probably simply use the
planner’s estimated duration and place the traveler in the destination queue 33
seconds after his arrival at the origin. However, the Traffic Microsimulator could
also choose to estimate its own duration. The Traffic Microsimulator will not use the
node information.

Trip 1/Leg 2 1 156 1 2
25233 456 2 789 2
1314 0 1
500 1314
1 0
18
0 0
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16

This is leg 2 of trip 1. The traveler will be driving (driver flag = 1) a car (mode = 0)
from parking accessory 456 to parking accessory 789 via the 16 nodes 1-16 using
vehicle 0, carrying no passengers. The expected start time is 7:00:33 a.m., and the
expected duration is 1314 seconds. The trip will cost $5.00 or 500 cents.

Trip 1/Leg 3 1 156 1 3
26547 789 2 10 2
127 0 1
0 127
1 0
5
0 1
17 18
1000

Traveler 1 picks up one passenger (traveler 1000) and drives to parking accessory 10
via nodes 17 and 18.

Trip 1/Leg 4 1 156 1 4
26674 10 2 11 3
30 0 1
0 30
0 2
0

The traveler walks (mode = 2) from parking accessory 10 to bus stop (accessory
type = 3) 11. The Route Planner, knowing that the Traffic Microsimulator will not
simulate walking, has chosen not to write out the details of the path the walker will
take (Number Of Tokens = 0).

Trip 1/Leg 5 1 156 1 5
26704 11 3 4 3
1502 0 1
0 1502
0 1
1
72

The traveler will ride in (driver_flag = 0) the first bus (mode = 1) arriving on route
72, from bus stop 11 to bus stop 4.

Trip 1/Leg 6 0 156 1 0
28206 4 3 5 1
31 0 1
0 31
1 2
0

The traveler takes 31 seconds to walk from bus stop 4 to activity location 5.

Trip 2/Leg 1 1 156 2 0
28237 5 1 5 1
28800 61200 1
0 28800
1 4
0

This is the first leg of trip 2 for traveler 1. It is an activity (mode = 4) that ends at
5:00 p.m. (= 17 ∗ 3600 = 61200 seconds) or eight hours (= 8 ∗ 3600 = 28800) after
arrival, whichever is later. There is no data associated with this leg, although the
Route Planner could, in principle, add anything—a list of projects the person will be
working on, a list of groceries to buy, etc.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 54

Appendix F: Error Codes

Error codes for the Route Planner are in the range 25000 – 25999.

Table 24. Route Planner error codes.

Code Description
25001 Couldn’t read activity file.
25002 Couldn’t read household file.
25003 Couldn’t read mode map file.
25004 Invalid program arguments.
25005 Required configuration file key not specified.
25006 Standard exception caught.
25007 Unknown exception caught.

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 55

Chapter Four: Index

10to26 utility, 38
26to10 utility, 38
Accessory location, 21
Activities list, 2
Activity file, 9
Activity Generator, 1, 19, 20
Activity legs, 9, 16, 52
Activity location, 2, 9, 12, 19, 20, 21, 22, 24,

26, 28, 32
Activity location table, 22
ACTIVITY_FILE, 9, 53
Algorithm, 21
Anomalous activity file, 4, 11, 12, 13, 15, 16
Anomalous activity list, 3
Barrett, 21
Bidirectional link, 22, 25
Bidirectional TRANSIMS links, 21
Bike mode, 8
Biking speed, 31
Binary files, 48
Bus layer, 28
Bus route, 29
Bus stop, 27, 28
CA_USE_PARTITIONED_ROUTE_FILE
S, 56

Car leg, 19
CatIndices, 45
CatIndices utility, 38
Commuter park-and-ride lot, 22
CongestedLinks, 43, 44, 46
Connectivity anomaly, 17
Cost, 6, 30
Data flow, 1
Dijkstra, 2, 21
Distance, 33
Distinguishing features, 6
DistributePlan, 41
Euclidean graph, 32
Execution speed, 4
Feedback, 9, 32
Free speed delay, 2, 31, 33
GCF, 33, 50
Generalized cost function, 33
Generalized Cost Function, 50
Header, 47
Heuristics, 32
Individual plans, 6

Input/Output, 2
Intermodal transition, 18
Intersection, 2, 18, 21
Intersection nodes, 24, 28
Invalid shared ride anomaly, 16
Invalid Shared Ride anomaly, 12, 13
Invalid shared ride time anomaly, 13, 16
Invalid Shared Ride Time anomaly, 13
Invalid Time anomaly, 13, 15
Iteration Database, 9, 13, 56
Itinerant traveler, 1
Jacob, 21
libTIO.a, 48
Light rail, 19
Light rail line, 29
Link delay file, 31
Location anomaly, 17
LOG_ROUTING, 35, 53
LOG_ROUTING_DETAIL, 35, 53
LOG_ROUTING_PROBLEM, 35
Logging, 35
Magic mode, 8
MakeHouseholdFile utility, 38
MakeHouseholds, 4
Marathe, 21
Mode file, 9
Mode preference, 6, 9, 19
Mode preference file, 1
Mode string, 8
MODE_MAP_FILE, 1, 9, 53
Mode-dependent data, 47, 48, 50, 52
Monetary cost, 33
Multiple machines, 4
Multiprocessor machines, 4
NET_PARKING_TABLE, 12
NET_TRANSIT_STOP_TABLE, 26
Network assumptions, 26
Network layers, 18
No Path anomaly, 13, 15
Node, 52
Parallelization, 4
Park-and-ride layer, 24
Park-and-ride lot, 24
Parking, 12, 19, 21, 33
Parking anomaly, 17

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 56

Parking location, 8, 9, 12, 18, 19, 20, 22, 24,
32

Parking lot, 2
Per link time-dependent delay costs, 6
Plan file, 9, 10, 47, 56
Plan list, 3
PLAN_FILE, 4, 53, 56
PlanFilter, 40, 43, 45
PlanFilter utility, 38
planio.c, 48
planio.h, 48
Preceding transportation leg, 10
Process link, 12, 18, 19, 32
PTL, 10
RetimePlans, 37
Route, 1
Route Planner, 1, 2, 3, 4, 6, 8, 9, 12, 13, 15,

18, 20, 21, 24, 26, 32, 47, 48, 49, 50, 56,
57

Route Planner Internal Network, 2, 28
ROUTE_DISPLAY_PATHS, 35
ROUTER_BIKING_SPEED, 31, 53
ROUTER_COMPLETED_HOUSEHOLD_FILE,

4, 35, 55
ROUTER_CORR, 53
ROUTER_DELAY_NOISE, 53
ROUTER_DEPENDANT_HOUSEHOLD_FI
LE, 38

ROUTER_DEPENDENT_HOUSEHOLD_FI
LE, 53

ROUTER_DISPLAY_PATHS, 53
ROUTER_FILTER_EXCLUDE_MODE, 53
ROUTER_FILTER_EXCLUDE_VEHICLE,

53
ROUTER_FILTER_INCLUDE_MODE, 53
ROUTER_FILTER_INCLUDE_VEHICLE,

53
ROUTER_GET_OFF_TRANSIT, 26, 31, 54
ROUTER_GET_OFF_TRANSIT_DELAY,

31, 54
ROUTER_GET_ON_TRANSIT, 26, 31, 54
ROUTER_GET_ON_TRANSIT_DELAY, 31,

54
ROUTER_HOUSEHOLD_FILE, 3, 9, 38, 54
ROUTER_INCLUDE_WALK_PLAN_NODE
S, 36, 54

ROUTER_INTERNAL_PLAN_SIZE, 35,
54

ROUTER_LINK_DELAY, 2, 31

ROUTER_LINK_DELAY_FILE, 2, 54
ROUTER_LINK_DELAY_MIN_COUNT, 31,

54
ROUTER_LINK_DELAY_MIN_VCOUNT,

31
ROUTER_LOG_FILE, 35
ROUTER_MAX_LEG_LENGTH, 54
ROUTER_MAX_NODES_EXAMINED, 54
ROUTER_MAX_TRIP_TIME, 54
ROUTER_MESSAGE_LEVEL, 54
ROUTER_NOISE_DELAY, 32
ROUTER_NUMBER_THREADS, 4, 54
ROUTER_OVERDO, 32, 55
ROUTER_PROBLEM_FILE, 13, 20, 55
ROUTER_RETIME_MODES, 37, 55
ROUTER_RETIME_PLANS, 55
ROUTER_RETIME_TRAVELER_FILE, 37,

55
ROUTER_SEED, 35, 55
ROUTER_TIME_REPORT_INTERVAL, 35,

55
ROUTER_WALKING_SPEED, 31, 55
ROUTER_ZERO_BACKD, 55
Schedule, 2
Sedgewick-Vitter heuristic, 32
Selector, 9, 13, 56
Shared ride, 12, 16
Signal, 2
Source files, 48
Street, 2, 19, 27
Street layer, 18, 22, 25, 28, 31
Time priority, 10
Traffic Microsimulator, 1, 2, 8, 31, 32, 47,

48, 49, 56, 57
TRANSIMS Interfaces library, 48
TRANSIMS Multimodal Network, 3
TRANSIMS Network, 2, 12, 18, 19, 21, 22,

24, 26, 29
TRANSIMS plan file interface, 47
Transit driver, 51
Transit layer, 19
Transit leg, 49
Transit mode, 8
Transit route, 2
Transit route file, 26, 51
Transit schedule file, 26
Transit stop, 8, 22, 26, 29, 49, 51
Transit stop table, 26
Transit vehicle, 7

Chapter Four—Route Planner Los Alamos National Laboratory

Volume Three—Modules 31 August 2004 57

TRANSIT_ROUTE_FILE, 26, 55
TRANSIT_SCHEDULE_FILE, 26, 55
Transportation legs, 9
Travel mode, 1, 2, 7
Travel mode constraints, 6
Travel modes, 8
Travel plan, 1
Travel time, 31
Traveler, 1, 6, 8, 9, 13, 15, 20, 24, 33, 47, 49
Traveler demographics, 6
Traveler plan, 7
Trip request, 7, 15

Trip Request, 1
trips, 7
Unimodal layers, 18
Unimodal legs, 9
Vehicle, 12, 19, 20, 49
Vehicle file, 1, 3, 9
VEHICLE_FILE, 1, 55
Walk layer, 19, 22, 25, 28, 31
Walking layer, 20
Walking leg, 19
Walking speed, 31

Chapter Four—Route Planner Los Alamos National Laboratory

	Introduction
	Overview
	TRANSIMS Network
	Route Planner Major Input/Output
	Household File
	Parallelization

	Route Planner Description
	Overview
	Distinguishing Features
	Individual Plans
	Per Link Time-Dependant Delay
	Travel Mode Constraints

	Terminology
	Traveler Plan
	Transit Vehicle
	Trip Request
	Mode String

	Travel Modes
	Trip Requests
	Generating Trip Requests from Activities
	Time Priority

	Parking
	Shared Rides
	Anomalous Activity File
	No Path Anomaly
	Invalid Time Anomaly
	Invalid Shared Ride Anomaly
	Invalid Shared Ride Time Anomaly
	Connectivity Anomaly
	Location Anomaly
	Parking Anomaly

	Network Layers
	Example

	Algorithm
	High-Level Description
	Route Planner Internal Network
	Terminology
	Example Transformation
	Network Assumptions made by the Route Planner
	Transit
	Cost
	Travel Time
	Heuristics

	Distance
	Monetary Cost
	Generalized Cost Function

	Current Limitations

	Route Planner Runtime Configuration
	Logging Configuration File Keys
	Other Configuration File Keys

	Plan Retime
	Route Planner Utility Programs
	MakeHouseholdFile Utility
	10to26 and 26to10 Utilities
	CatIndices Utility
	PlanFilter Utility
	DistributePlan Utility
	DistributePlan Configuration File Keys
	Troubleshooting

	CongestedLinks Utility
	RearrangePlans Utility
	P

	Plan Files
	Overview
	File Format
	Data Definitions and Format
	Mode-Dependent Data

	Plan Library Files
	Plan File Configuration File Keys
	Example

